metabelian, supersoluble, monomial
Aliases: C33⋊17SD16, C12.54S32, (C3×C6).39D12, C3⋊2(C24⋊2S3), C32⋊4Q8⋊7S3, (C3×C12).120D6, (C32×C6).37D4, C32⋊8(C24⋊C2), C6.14(C12⋊S3), C33⋊12D4.3C2, C2.6(C33⋊8D4), C3⋊1(C32⋊5SD16), C6.10(C3⋊D12), C32⋊11(Q8⋊2S3), (C32×C12).16C22, (C3×C3⋊C8)⋊3S3, C3⋊C8⋊3(C3⋊S3), C4.3(S3×C3⋊S3), (C32×C3⋊C8)⋊4C2, C12.14(C2×C3⋊S3), (C3×C32⋊4Q8)⋊3C2, (C3×C6).79(C3⋊D4), SmallGroup(432,444)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C33⋊17SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=ece=c-1, ede=d3 >
Subgroups: 1616 in 184 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, D4, Q8, C32, C32, C32, Dic3, C12, C12, C12, D6, SD16, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, Dic6, D12, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, C2×C3⋊S3, C24⋊C2, Q8⋊2S3, C33⋊C2, C32×C6, C3×C3⋊C8, C3×C24, C3×Dic6, C32⋊4Q8, C12⋊S3, C3×C3⋊Dic3, C32×C12, C2×C33⋊C2, C32⋊5SD16, C24⋊2S3, C32×C3⋊C8, C3×C32⋊4Q8, C33⋊12D4, C33⋊17SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊S3, D12, C3⋊D4, S32, C2×C3⋊S3, C24⋊C2, Q8⋊2S3, C3⋊D12, C12⋊S3, S3×C3⋊S3, C32⋊5SD16, C24⋊2S3, C33⋊8D4, C33⋊17SD16
(1 20 62)(2 21 63)(3 22 64)(4 23 57)(5 24 58)(6 17 59)(7 18 60)(8 19 61)(9 52 25)(10 53 26)(11 54 27)(12 55 28)(13 56 29)(14 49 30)(15 50 31)(16 51 32)(33 71 44)(34 72 45)(35 65 46)(36 66 47)(37 67 48)(38 68 41)(39 69 42)(40 70 43)
(1 15 66)(2 16 67)(3 9 68)(4 10 69)(5 11 70)(6 12 71)(7 13 72)(8 14 65)(17 55 44)(18 56 45)(19 49 46)(20 50 47)(21 51 48)(22 52 41)(23 53 42)(24 54 43)(25 38 64)(26 39 57)(27 40 58)(28 33 59)(29 34 60)(30 35 61)(31 36 62)(32 37 63)
(1 31 47)(2 48 32)(3 25 41)(4 42 26)(5 27 43)(6 44 28)(7 29 45)(8 46 30)(9 38 22)(10 23 39)(11 40 24)(12 17 33)(13 34 18)(14 19 35)(15 36 20)(16 21 37)(49 61 65)(50 66 62)(51 63 67)(52 68 64)(53 57 69)(54 70 58)(55 59 71)(56 72 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 5)(2 8)(4 6)(9 68)(10 71)(11 66)(12 69)(13 72)(14 67)(15 70)(16 65)(17 57)(18 60)(19 63)(20 58)(21 61)(22 64)(23 59)(24 62)(25 41)(26 44)(27 47)(28 42)(29 45)(30 48)(31 43)(32 46)(33 53)(34 56)(35 51)(36 54)(37 49)(38 52)(39 55)(40 50)
G:=sub<Sym(72)| (1,20,62)(2,21,63)(3,22,64)(4,23,57)(5,24,58)(6,17,59)(7,18,60)(8,19,61)(9,52,25)(10,53,26)(11,54,27)(12,55,28)(13,56,29)(14,49,30)(15,50,31)(16,51,32)(33,71,44)(34,72,45)(35,65,46)(36,66,47)(37,67,48)(38,68,41)(39,69,42)(40,70,43), (1,15,66)(2,16,67)(3,9,68)(4,10,69)(5,11,70)(6,12,71)(7,13,72)(8,14,65)(17,55,44)(18,56,45)(19,49,46)(20,50,47)(21,51,48)(22,52,41)(23,53,42)(24,54,43)(25,38,64)(26,39,57)(27,40,58)(28,33,59)(29,34,60)(30,35,61)(31,36,62)(32,37,63), (1,31,47)(2,48,32)(3,25,41)(4,42,26)(5,27,43)(6,44,28)(7,29,45)(8,46,30)(9,38,22)(10,23,39)(11,40,24)(12,17,33)(13,34,18)(14,19,35)(15,36,20)(16,21,37)(49,61,65)(50,66,62)(51,63,67)(52,68,64)(53,57,69)(54,70,58)(55,59,71)(56,72,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,5)(2,8)(4,6)(9,68)(10,71)(11,66)(12,69)(13,72)(14,67)(15,70)(16,65)(17,57)(18,60)(19,63)(20,58)(21,61)(22,64)(23,59)(24,62)(25,41)(26,44)(27,47)(28,42)(29,45)(30,48)(31,43)(32,46)(33,53)(34,56)(35,51)(36,54)(37,49)(38,52)(39,55)(40,50)>;
G:=Group( (1,20,62)(2,21,63)(3,22,64)(4,23,57)(5,24,58)(6,17,59)(7,18,60)(8,19,61)(9,52,25)(10,53,26)(11,54,27)(12,55,28)(13,56,29)(14,49,30)(15,50,31)(16,51,32)(33,71,44)(34,72,45)(35,65,46)(36,66,47)(37,67,48)(38,68,41)(39,69,42)(40,70,43), (1,15,66)(2,16,67)(3,9,68)(4,10,69)(5,11,70)(6,12,71)(7,13,72)(8,14,65)(17,55,44)(18,56,45)(19,49,46)(20,50,47)(21,51,48)(22,52,41)(23,53,42)(24,54,43)(25,38,64)(26,39,57)(27,40,58)(28,33,59)(29,34,60)(30,35,61)(31,36,62)(32,37,63), (1,31,47)(2,48,32)(3,25,41)(4,42,26)(5,27,43)(6,44,28)(7,29,45)(8,46,30)(9,38,22)(10,23,39)(11,40,24)(12,17,33)(13,34,18)(14,19,35)(15,36,20)(16,21,37)(49,61,65)(50,66,62)(51,63,67)(52,68,64)(53,57,69)(54,70,58)(55,59,71)(56,72,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,5)(2,8)(4,6)(9,68)(10,71)(11,66)(12,69)(13,72)(14,67)(15,70)(16,65)(17,57)(18,60)(19,63)(20,58)(21,61)(22,64)(23,59)(24,62)(25,41)(26,44)(27,47)(28,42)(29,45)(30,48)(31,43)(32,46)(33,53)(34,56)(35,51)(36,54)(37,49)(38,52)(39,55)(40,50) );
G=PermutationGroup([[(1,20,62),(2,21,63),(3,22,64),(4,23,57),(5,24,58),(6,17,59),(7,18,60),(8,19,61),(9,52,25),(10,53,26),(11,54,27),(12,55,28),(13,56,29),(14,49,30),(15,50,31),(16,51,32),(33,71,44),(34,72,45),(35,65,46),(36,66,47),(37,67,48),(38,68,41),(39,69,42),(40,70,43)], [(1,15,66),(2,16,67),(3,9,68),(4,10,69),(5,11,70),(6,12,71),(7,13,72),(8,14,65),(17,55,44),(18,56,45),(19,49,46),(20,50,47),(21,51,48),(22,52,41),(23,53,42),(24,54,43),(25,38,64),(26,39,57),(27,40,58),(28,33,59),(29,34,60),(30,35,61),(31,36,62),(32,37,63)], [(1,31,47),(2,48,32),(3,25,41),(4,42,26),(5,27,43),(6,44,28),(7,29,45),(8,46,30),(9,38,22),(10,23,39),(11,40,24),(12,17,33),(13,34,18),(14,19,35),(15,36,20),(16,21,37),(49,61,65),(50,66,62),(51,63,67),(52,68,64),(53,57,69),(54,70,58),(55,59,71),(56,72,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,5),(2,8),(4,6),(9,68),(10,71),(11,66),(12,69),(13,72),(14,67),(15,70),(16,65),(17,57),(18,60),(19,63),(20,58),(21,61),(22,64),(23,59),(24,62),(25,41),(26,44),(27,47),(28,42),(29,45),(30,48),(31,43),(32,46),(33,53),(34,56),(35,51),(36,54),(37,49),(38,52),(39,55),(40,50)]])
60 conjugacy classes
class | 1 | 2A | 2B | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4A | 4B | 6A | ··· | 6E | 6F | 6G | 6H | 6I | 8A | 8B | 12A | ··· | 12H | 12I | ··· | 12Q | 12R | 12S | 24A | ··· | 24P |
order | 1 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 108 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | 36 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 36 | 36 | 6 | ··· | 6 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | SD16 | D12 | C3⋊D4 | C24⋊C2 | S32 | Q8⋊2S3 | C3⋊D12 | C32⋊5SD16 |
kernel | C33⋊17SD16 | C32×C3⋊C8 | C3×C32⋊4Q8 | C33⋊12D4 | C3×C3⋊C8 | C32⋊4Q8 | C32×C6 | C3×C12 | C33 | C3×C6 | C3×C6 | C32 | C12 | C32 | C6 | C3 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 5 | 2 | 8 | 2 | 16 | 4 | 1 | 4 | 8 |
Matrix representation of C33⋊17SD16 ►in GL8(𝔽73)
72 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
72 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 72 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 55 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 61 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 48 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(73))| [72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,55,61,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,48,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C33⋊17SD16 in GAP, Magma, Sage, TeX
C_3^3\rtimes_{17}{\rm SD}_{16}
% in TeX
G:=Group("C3^3:17SD16");
// GroupNames label
G:=SmallGroup(432,444);
// by ID
G=gap.SmallGroup(432,444);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,197,64,135,58,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=e*c*e=c^-1,e*d*e=d^3>;
// generators/relations